Lecture: 3-5 Implicit Differentiation (Part 2)

Example 1: Review. Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $x^{2}-x y-y^{2}=1$
(b) $\sin (x+y)=2 x-2 y$

Example 2 Find all points on the curve $x^{2}+2 y^{2}=1$ where the tangent line has slope 1.

Example 3: If $g(x)+x \sin g(x)=3 x^{2}+1$ and $g(1)=0$ find $g^{\prime}(1)$.

Derivatives of Inverse Trigonometric Functions

Implicit differentiation is also used to derive formulas for derivatives of inverse functions.
Example 4: Find the derivatives of the following functions.
(a) $y=\sin ^{-1} x$
(b) $y=\tan ^{-1} x$

Example 5: Using implicit differentiation find the derivative of $y=\cos ^{-1} x$.

Derivatives of Inverse Trigonometric Functions:

- $\frac{d}{d x}\left(\sin ^{-1} x\right)=$ \qquad
- $\frac{d}{d x}\left(\cos ^{-1} x\right)=$ \qquad
- $\frac{d}{d x}\left(\tan ^{-1} x\right)=$ \qquad

Example 6: Differentiate the following functions.
(a) $y=\cos ^{-1}(3 x+5)$
(b) $y=\arctan 2 x$

Example 7: Differentiate the following functions.
(a) $f(x)=\arcsin (\sqrt{x})$
(b) $g(x)=\tan ^{-1}\left(x-\sqrt{1+x^{2}}\right)$

Example 8: Differentiate the following functions.
(a) $y=x^{2} \tan ^{-1} \sqrt{x}$
(b) $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$

Example 9: The van der Waals equation for n moles of a gas is

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

where P is the pressure, V is the volume, and T is the temperature of the gas. The constant R is the universal gas constant and a and b are constants that are characteristic of a particular gas.
(a) If T remains constant, use implicit differentiation to find $d V / d P$.
(b) Find the rate of change of volume with respect to pressure of 1 mole of carbon dioxide at a volume of $V=10$ L and a pressure of $P=2.5 \mathrm{~atm}$. Use $a=3.592 \mathrm{~L}^{2}-\mathrm{atm} / \mathrm{mole}^{2}$ and $b=0.04267 \mathrm{~L} / \mathrm{mole}$.

